Deckhouse Kubernetes Platform for bare metal

At this point, you have created a cluster consisting of a single node — the master node. By default, only a limited set of system components runs on the master node. To ensure the full functionality of the cluster, you need to either add at least one worker node to the cluster or allow the remaining Deckhouse components to run on the master node.

Select one of the two options below to continue installing the cluster:

Add a new node to the cluster (for more information about adding a static node to a cluster, read the documentation):

  • Start a new virtual machine that will become the cluster node.
  • Configure the StorageClass for the local storage by running the following command on the master node:
    sudo -i d8 k create -f - << EOF
    apiVersion: deckhouse.io/v1alpha1
    kind: LocalPathProvisioner
    metadata:
      name: localpath
    spec:
      path: "/opt/local-path-provisioner"
      reclaimPolicy: Delete
    EOF
    
  • Make the created StorageClass as the default one in the cluster:

    sudo -i d8 k patch mc global --type merge \
      -p "{\"spec\": {\"settings\":{\"defaultClusterStorageClass\":\"localpath\"}}}"
    
  • Create a NodeGroup worker. To do so, run the following command on the master node:

    sudo -i d8 k create -f - << EOF
    apiVersion: deckhouse.io/v1
    kind: NodeGroup
    metadata:
      name: worker
    spec:
      nodeType: Static
      staticInstances:
        count: 1
        labelSelector:
          matchLabels:
            role: worker
    EOF
    
  • Generate a new SSH key with an empty passphrase. To do so, run the following command on the master node:

    ssh-keygen -t rsa -f /dev/shm/caps-id -C "" -N ""
    
  • Create an SSHCredentials resource in the cluster. To do so, run the following command on the master node:

    sudo -i d8 k create -f - <<EOF
    apiVersion: deckhouse.io/v1alpha1
    kind: SSHCredentials
    metadata:
      name: caps
    spec:
      user: caps
      privateSSHKey: "`cat /dev/shm/caps-id | base64 -w0`"
    EOF
    
  • Print the public part of the previously generated SSH key (you will need it in the next step). To do so, run the following command on the master node:

    cat /dev/shm/caps-id.pub
    
  • Create the caps user on the virtual machine you have started. To do so, run the following command, specifying the public part of the SSH key obtained in the previous step:

    # Specify the public part of the user SSH key.
    export KEY='<SSH-PUBLIC-KEY>'
    useradd -m -s /bin/bash caps
    usermod -aG sudo caps
    echo 'caps ALL=(ALL) NOPASSWD: ALL' | sudo EDITOR='tee -a' visudo
    mkdir /home/caps/.ssh
    echo $KEY >> /home/caps/.ssh/authorized_keys
    chown -R caps:caps /home/caps
    chmod 700 /home/caps/.ssh
    chmod 600 /home/caps/.ssh/authorized_keys
    
  • Create a StaticInstance for the node to be added. To do so, run the following command on the master node (specify IP address of the node):

    # Specify the IP address of the node you want to connect to the cluster.
    export NODE=<NODE-IP-ADDRESS>
    sudo -i d8 k create -f - <<EOF
    apiVersion: deckhouse.io/v1alpha1
    kind: StaticInstance
    metadata:
      name: d8cluster-worker
      labels:
        role: worker
    spec:
      address: "$NODE"
      credentialsRef:
        kind: SSHCredentials
        name: caps
    EOF
    
  • If you have added additional nodes to the cluster, ensure they are Ready.

    On the master node, run the following command to get nodes list:

    sudo -i d8 k get no
    

    Example of the output...

    sudo -i d8 k get no
    NAME               STATUS   ROLES                  AGE    VERSION
    d8cluster          Ready    control-plane,master   30m   v1.23.17
    d8cluster-worker   Ready    worker                 10m   v1.23.17
    

Note that it may take some time to get all Deckhouse components up and running after the installation is complete.

  • Make sure the Kruise controller manager is Ready before continuing.

    On the master node, run the following command:

    sudo -i d8 k -n d8-ingress-nginx get po -l app=kruise
    

    Example of the output...

    $ sudo -i d8 k -n d8-ingress-nginx get po -l app=kruise
    NAME                                         READY   STATUS    RESTARTS    AGE
    kruise-controller-manager-7dfcbdc549-b4wk7   3/3     Running   0           15m
    

Next, you will need to create an Ingress controller, a user to access the web interfaces, and configure the DNS.

  • Setting up an Ingress controller

    On the master node, create the ingress-nginx-controller.yml file containing the Ingress controller configuration:

    # Section containing the parameters of NGINX Ingress controller.
    # https://deckhouse.io/products/kubernetes-platform/documentation/v1/modules/ingress-nginx/cr.html
    apiVersion: deckhouse.io/v1
    kind: IngressNginxController
    metadata:
      name: nginx
    spec:
      ingressClass: nginx
      # The way traffic goes to cluster from the outer network.
      inlet: HostPort
      hostPort:
        httpPort: 80
        httpsPort: 443
      # Describes on which nodes the Ingress Controller will be located.
      # You might consider changing this.
      # More examples here.
      # https://deckhouse.io/products/kubernetes-platform/documentation/v1/modules/ingress-nginx/examples.html
      nodeSelector:
        node-role.kubernetes.io/control-plane: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/control-plane
        operator: Exists
    

    Apply it using the following command on the master node:

    sudo -i d8 k create -f ingress-nginx-controller.yml
    

    It may take some time to start the Ingress controller after installing Deckhouse. Make sure the Ingress controller has started before continuing (run on the master node):

    sudo -i d8 k -n d8-ingress-nginx get po -l app=controller
    
    Wait for the Ingress controller pods to switch to Ready state.

    Example of the output...

    $ sudo -i d8 k -n d8-ingress-nginx get po -l app=controller
    NAME                                       READY   STATUS    RESTARTS   AGE
    controller-nginx-r6hxc                     3/3     Running   0          5m
    
  • Create a user to access the cluster web interfaces

    Create on the master node the user.yml file containing the user account data and access rights:

    apiVersion: deckhouse.io/v1
    kind: ClusterAuthorizationRule
    metadata:
      name: admin
    spec:
      # Kubernetes RBAC accounts list
      subjects:
      - kind: User
        name: admin@deckhouse.io
      # pre-defined access template
      accessLevel: SuperAdmin
      # allow user to do kubectl port-forward
      portForwarding: true
    ---
    # section containing the parameters of the static user
    # version of the Deckhouse API
    apiVersion: deckhouse.io/v1
    kind: User
    metadata:
      name: admin
    spec:
      # user e-mail
      email: admin@deckhouse.io
      # this is a hash of the password <GENERATED_PASSWORD>, generated  now
      # generate your own or use it at your own risk (for testing purposes)
      # echo "<GENERATED_PASSWORD>" | htpasswd -BinC 10 "" | cut -d: -f2 | base64 -w0
      # you might consider changing this
      password: <GENERATED_PASSWORD_HASH>
    

    Apply it using the following command on the master node:

    sudo -i d8 k create -f user.yml
    
  • Create DNS records to organize access to the cluster web-interfaces:
    • Discover public IP address of the node where the Ingress controller is running.
    • If you have the DNS server and you can add a DNS records:
      • If your cluster DNS name template is a wildcard DNS (e.g., %s.kube.my), then add a corresponding wildcard A record containing the public IP, you've discovered previously.
      • If your cluster DNS name template is NOT a wildcard DNS (e.g., %s-kube.company.my), then add A or CNAME records containing the public IP, you've discovered previously, for the following Deckhouse service DNS names:
        api.example.com
        argocd.example.com
        dashboard.example.com
        documentation.example.com
        dex.example.com
        grafana.example.com
        hubble.example.com
        istio.example.com
        istio-api-proxy.example.com
        kubeconfig.example.com
        openvpn-admin.example.com
        prometheus.example.com
        status.example.com
        upmeter.example.com
        
      • Important: The domain used in the template should not match the domain specified in the clusterDomain parameter and the internal service network zone. For example, if clusterDomain is set to cluster.local (the default value) and the service network zone is ru-central1.internal, then publicDomainTemplate cannot be %s.cluster.local or %s.ru-central1.internal.
    • If you don't have a DNS server: on your PC add static entries (specify your public IP address in the PUBLIC_IPvariable) that match the names of specific services to the public IP to the /etc/hosts file for Linux (%SystemRoot%\system32\drivers\etc\hosts for Windows):

      export PUBLIC_IP="<PUT_PUBLIC_IP_HERE>"
      sudo -E bash -c "cat <<EOF >> /etc/hosts
      $PUBLIC_IP api.example.com
      $PUBLIC_IP argocd.example.com
      $PUBLIC_IP dashboard.example.com
      $PUBLIC_IP documentation.example.com
      $PUBLIC_IP dex.example.com
      $PUBLIC_IP grafana.example.com
      $PUBLIC_IP hubble.example.com
      $PUBLIC_IP istio.example.com
      $PUBLIC_IP istio-api-proxy.example.com
      $PUBLIC_IP kubeconfig.example.com
      $PUBLIC_IP openvpn-admin.example.com
      $PUBLIC_IP prometheus.example.com
      $PUBLIC_IP status.example.com
      $PUBLIC_IP upmeter.example.com
      EOF
      "