Getting logs from all cluster Pods and sending them to Loki

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLoggingConfig
metadata:
  name: all-logs
spec:
  type: KubernetesPods
  destinationRefs:
  - loki-storage
---
apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: loki-storage
spec:
  type: Loki
  loki:
    endpoint: http://loki.loki:3100

Reading Pod logs from a specified namespace with a specified label and redirecting to Loki and Elasticsearch

Reading logs from namespace=whispers with label app=booking and storing them into Loki and Elasticsearch:

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLoggingConfig
metadata:
  name: whispers-booking-logs
spec:
  type: KubernetesPods
  kubernetesPods:
    namespaceSelector:
      matchNames:
        - whispers
    labelSelector:
      matchLabels:
        app: booking
  destinationRefs:
  - loki-storage
  - es-storage
---
apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: loki-storage
spec:
  type: Loki
  loki:
    endpoint: http://loki.loki:3100
---
apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: es-storage
spec:
  type: Elasticsearch
  elasticsearch:
    endpoint: http://192.168.1.1:9200
    index: logs-%F
    auth:
      strategy: Basic
      user: elastic
      password: c2VjcmV0IC1uCg==

Creating a source in namespace and reading logs of all Pods in that NS with forwarding them to Loki

Namespaced pipeline - reading logs from test-whispers namespace (all Pods):

apiVersion: deckhouse.io/v1alpha1
kind: PodLoggingConfig
metadata:
  name: whispers-logs
  namespace: tests-whispers
spec:
  clusterDestinationRefs:
    - loki-storage
---
apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: loki-storage
spec:
  type: Loki
  loki:
    endpoint: http://loki.loki:3100

Reading only Pods in the specified namespace and having a certain label

Read logs from Pods with label app=booking in namespace test-whispers:

apiVersion: deckhouse.io/v1alpha1
kind: PodLoggingConfig
metadata:
  name: whispers-logs
  namespace: tests-whispers
spec:
  labelSelector:
    matchLabels:
      app: booking
  clusterDestinationRefs:
    - loki-storage
---
apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: loki-storage
spec:
  type: Loki
  loki:
    endpoint: http://loki.loki:3100

Migration from Promtail to Log-Shipper

Path /loki/api/v1/push has to be removed from the previously used Loki URL.

Vector will add this PATH automatically during working with Loki destination.

Working with Grafana Cloud

This documentation expects that you have created API key.

Grafana cloud API key

Firstly you should encode your token with base64.

echo -n "<YOUR-GRAFANACLOUD-TOKEN>" | base64 -w0

Then you can create ClusterLogDestination

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: loki-storage
spec:
  loki:
    auth:
      password: PFlPVVItR1JBRkFOQUNMT1VELVRPS0VOPg==
      strategy: Basic
      user: "<YOUR-GRAFANACLOUD-USER>"
    endpoint: <YOUR-GRAFANACLOUD-URL> # For example https://logs-prod-us-central1.grafana.net or https://logs-prod-eu-west-0.grafana.net
  type: Loki

Now you can create PodLogginConfig or ClusterPodLoggingConfig and send logs to Grafana Cloud.

Adding Loki source to Deckhouse Grafana

You can work with Loki from embedded to deckhouse Grafana. Just add GrafanaAdditionalDatasource

apiVersion: deckhouse.io/v1
kind: GrafanaAdditionalDatasource
metadata:
  name: loki
spec:
  access: Proxy
  basicAuth: false
  jsonData:
    maxLines: 5000
    timeInterval: 30s
  type: loki
  url: http://loki.loki:3100

Elasticsearch < 6.X usage

For Elasticsearch < 6.0 doc_type indexing should be set. Config should look like this:

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: es-storage
spec:
  type: Elasticsearch
  elasticsearch:
    endpoint: http://192.168.1.1:9200
    docType: "myDocType" # Set any string here. It should not start with '_'
    auth:
      strategy: Basic
      user: elastic
      password: c2VjcmV0IC1uCg==

Index template for Elasticsearch

It is possible to route logs to particular indexes based on metadata using index templating:

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: es-storage
spec:
  type: Elasticsearch
  elasticsearch:
    endpoint: http://192.168.1.1:9200
    index: "k8s-{{ namespace }}-%F"

For the above example for each Kubernetes namespace a dedicated index in Elasticsearch will be created.

This feature works well combining with extraLabels:

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: es-storage
spec:
  type: Elasticsearch
  elasticsearch:
    endpoint: http://192.168.1.1:9200
    index: "k8s-{{ service }}-{{ namespace }}-%F"
  extraLabels:
    service: "{{ service_name }}"
  1. If a log message is in JSON format, the service_name field of this JSON document is moved to the metadata level.
  2. The new metadata field service is used for the index template.

Splunk integration

It is possible to send logs from Deckhouse to Splunk.

  1. Endpoint must be equal to the Splunk instance name with the 8088 port and no path provided, e.g. https://prd-p-xxxxxx.splunkcloud.com:8088.
  2. To add a token to ingest logs, go to Setting -> Data inputs, add a new HTTP Event Collector and copy a token.
  3. Provide a Splunk index to store logs, e.g., logs.
apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: splunk
spec:
  type: Splunk
  splunk:
    endpoint: https://prd-p-xxxxxx.splunkcloud.com:8088
    token: xxxx-xxxx-xxxx
    index: logs
    tls:
      verifyCertificate: false
      verifyHostname: false

Splunk destination doesn’t support pod labels for indexes. Consider exporting necessary labels with the extraLabels option.

extraLabels:
  pod_label_app: '{{ pod_labels.app }}'

Simple Logstash example

To send logs to Logstash, the tcp input should be configured on the Logstash instance side, and its codec should be set to json.

An example of the minimal Logstash configuration:

input {
  tcp {
    port => 12345
    codec => json
  }
}
output {
  stdout { codec => json }
}

An example of the ClusterLogDestination manifest:

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: logstash
spec:
  type: Logstash
  logstash:
    endpoint: logstash.default:12345

Syslog

The following examples sets severity for the syslog messages and uses the socket destination:

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: rsyslog
spec:
  type: Socket
  socket:
    mode: TCP
    address: 192.168.0.1:3000
    encoding: 
      codec: Syslog
  extraLabels:
    syslog.severity: "alert"
    # the request_id field should be present in the log message
    syslog.message_id: "{{ request_id }}"

Graylog integration

Make sure that an incoming stream is configured in Graylog to receive messages over the TCP protocol on the specified port. Example manifest for integration with Graylog:

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: test-socket2-dest
spec:
  type: Socket
  socket:
    address: graylog.svc.cluster.local:9200
    mode: TCP
    encoding:
      codec: GELF

Logs in CEF Format

There is a way to format logs in CEF format using codec: CEF, with overriding cef.name and cef.severity based on values from the message field (application log) in JSON format.

In the example below, app and log_level are keys containing values for overriding:

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: siem-kafka
spec:
  extraLabels:
    cef.name: '{{ app }}'
    cef.severity: '{{ log_level }}'
  type: Kafka
  kafka:
    bootstrapServers:
      - my-cluster-kafka-brokers.kafka:9092
    encoding:
      codec: CEF
    tls:
      verifyCertificate: false
      verifyHostname: true
    topic: logs

You can also manually set your own values:

extraLabels:
  cef.name: 'TestName'
  cef.severity: '1'

Collect Kubernetes Events

Kubernetes Events can be collected by log-shipper if events-exporter is enabled in the extended-monitoring module configuration.

Enable events-exporter by adjusting extended-monitoring settings:

apiVersion: deckhouse.io/v1alpha1
kind: ModuleConfig
metadata:
  name: extended-monitoring
spec:
  version: 1
  settings:
    events:
      exporterEnabled: true

Apply the following ClusterLoggingConfig to collect logs from the events-exporter Pod:

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLoggingConfig
metadata:
  name: kubernetes-events
spec:
  type: KubernetesPods
  kubernetesPods:
    labelSelector:
      matchLabels:
        app: events-exporter
    namespaceSelector:
      matchNames:
      - d8-monitoring
  destinationRefs:
  - loki-storage

Log filters

Users can filter logs by applying two filters:

  • labelFilter — applies to the top-level metadata, e.g., container, namespace, or Pod name.
  • logFilter — applies to fields of a message if it is in JSON format.

Collect only logs of the nginx container

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLoggingConfig
metadata:
  name: nginx-logs
spec:
  type: KubernetesPods
  labelFilter:
  - field: container
    operator: In
    values: [nginx]
  destinationRefs:
  - loki-storage

Collect logs without strings GET /status" 200

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLoggingConfig
metadata:
  name: all-logs
spec:
  type: KubernetesPods
  destinationRefs:
  - loki-storage
  labelFilter:
  - field: message
    operator: NotRegex
    values:
    - .*GET /status" 200$

Audit of kubelet actions

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLoggingConfig
metadata:
  name: kubelet-audit-logs
spec:
  type: File
  file:
    include:
    - /var/log/kube-audit/audit.log
  logFilter:
  - field: userAgent  
    operator: Regex
    values: ["kubelet.*"]
  destinationRefs:
  - loki-storage

Deckhouse system logs

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLoggingConfig
metadata:
  name: system-logs
spec:
  type: File
  file:
    include:
    - /var/log/syslog
  labelFilter:
  - field: message
    operator: Regex
    values:
    - .*d8-kubelet-forker.*
    - .*containerd.*
    - .*bashible.*
    - .*kernel.*
  destinationRefs:
  - loki-storage

If you need logs from only one or from a small group of a Pods, try to use the kubernetesPods settings to reduce the number of reading filed. Do not use highly grained filters to read logs from a single pod.

Collect logs from production namespaces using the namespace label selector option

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLoggingConfig
metadata:
  name: production-logs
spec:
  type: KubernetesPods
  kubernetesPods:
    namespaceSelector:
      labelSelector:
        matchLabels:
          environment: production
  destinationRefs:
  - loki-storage

Exclude Pods or namespaces with a label

There is a preconfigured label to exclude particular namespaces or Pods: log-shipper.deckhouse.io/exclude=true. It can help to stop collecting logs from a namespace or Pod without changing global configurations.

---
apiVersion: v1
kind: Namespace
metadata:
  name: test-namespace
  labels:
    log-shipper.deckhouse.io/exclude: "true"
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: test-deployment
spec:
  ...
  template:
    metadata:
      labels:
        log-shipper.deckhouse.io/exclude: "true"

Enable Buffering

The log buffering configuration is essential for improving the reliability and performance of the log collection system. Buffering can be useful in the following cases:

  1. Temporary connectivity disruptions. If there are temporary disruptions or instability in the connection to the log storage system (such as Elasticsearch), a buffer allows logs to be temporarily stored and sent when the connection is restored.

  2. Smoothing out load peaks. During sudden spikes in log volume, a buffer helps smooth out peak loads on the log storage system, preventing it from becoming overloaded and potentially losing data.

  3. Performance optimization. Buffering helps optimize the performance of the log collection system by accumulating logs and sending them in batches, which reduces the number of network requests and improves overall throughput.

Example of enabling in-memory buffering

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: loki-storage
spec:
  buffer:
    memory:
      maxEvents: 4096
    type: Memory
  type: Loki
  loki:
    endpoint: http://loki.loki:3100

Example of enabling disk buffering

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: loki-storage
spec:
  buffer:
    disk:
      maxSize: 1Gi
    type: Disk
  type: Loki
  loki:
    endpoint: http://loki.loki:3100

Example of defining behavior when the buffer is full

apiVersion: deckhouse.io/v1alpha1
kind: ClusterLogDestination
metadata:
  name: loki-storage
spec:
  buffer:
    disk:
      maxSize: 1Gi
    type: Disk
    whenFull: DropNewest
  type: Loki
  loki:
    endpoint: http://loki.loki:3100

More detailed description of the parameters is available in the ClusterLogDestination resource.